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ABSTRACT

The National Ignition Facility (NIF) is producing experimental results for the study of Inertial Confinement
Fusion (ICF). The Gamma Reaction History (GRH) diagnostic at NIF can detect gamma rays to measure fusion
burn parameters such as fusion burn width, bang time, neutron yield, and areal density of the compressed ablator
for cryogenic deuterium-tritium (DT) implosions. Gamma-ray signals detected with this diagnostic are inherently
distorted by hardware impulse response functions (IRFs) and gains, and are comprised of several components
including gamma rays from laser-plasma interactions (LPI). One method for removing hardware distortions to
approximate the gamma-ray reaction history is deconvolution. However, deconvolution of the distorted signal to
obtain the gamma-ray reaction history and its associated parameters presents an ill-posed inverse problem and
does not separate out the source components of the gamma-ray signal. A multi-dimensional parameter space
model for the distorted gamma-ray signal has been developed in the literature. To complement a deconvolution,
we develop a multi-objective optimization algorithm to determine the model parameters so that the error between
the model and the collected gamma-ray data is minimized in the least-squares sense. The implementation of the
optimization algorithm must be sufficiently robust to be used in automated production software. To achieve this
level of robustness, impulse response signals must be carefully processed and constraints on the parameter space
based on theory and experimentation must be implemented to ensure proper convergence of the algorithm. In
this paper, we focus on the optimization algorithm’s theory and implementation.

Keywords: multi-objective, optimization, gamma-ray reaction history

1. INTRODUCTION

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) is a 192-beam
pulsed laser system. It is the world’s largest and most powerful laser system in use for the study of Inertial
Confinement Fusion and high-energy-density (HED) science. A primary goal of the NIF is to achieve ignition
of a deuterium-tritium (DT) fuel capsule and provide access to the study of fusion ignition and the physics of
nuclear weapons [1].

The Gamma Reaction History (GRH) diagnostic uses gas Cherenkov detectors to measure gamma-rays in
specific energy ranges. The diagnostic contains four identical Cherenkov gas cells with variable thresholds on
gamma-ray energy. These are typically configured at 2.9, 4.5, 8, and 10 MeV. Each cell contains four scope
channels whose output is stitched together by a stitching algorithm providing a recording of the gamma-ray
signal. Additional information on the GRH diagnostic and the stitching algorithm can be found in [2] and [3]
respectively.

The gamma-ray signals detected by the GRH diagnostic scopes are distorted by hardware impulse response
functions (IRFs) and hardware gains. These distortions must be removed in order to obtain useful performance
metrics on the DT implosion experiments. The multi-objective optimization algorithm seeks to remove the
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Figure 1. A flow chart of the entire multi-objective algorithm.

hardware impulse response functions and gains as well as estimate the components of the gamma-ray signal.
This is accomplished by convolving a model of the gamma-ray signal with the hardware impulse responses that
distort it and fitting the gamma-ray model parameters to the stitched gamma-ray signal. A model of the stitched
gamma-ray signal and a forward-fit routine has been developed in [4]. We use the stitched gamma-ray model
developed in Ref. 4 as our objective function to our optimization algorithm. The core of the optimization
makes use of a modified Levenberg-Marquardt algorithm which is derived in detail in [5] and [6]. Special care is
taken to restrict the parameter space and process the impulse response functions to ensure proper convergence
of the algorithm to local minima that is closest to the objective model function in the sense of least-squares and
other metrics which we derive in this paper; this also leads to a more robust optimization algorithm which can
be implemented in automated production software. The optimization is done simultaneously to all four scopes
stitched gamma-ray signal, making this a multi-objective optimization. A flow chart of the entire multi-objective
algorithm is given in figure 1. In the next section and subsequent subsections, we will explain each step of the
algorithm (represented by the blocks in figure 1).

2. ALGORITHM DERIVATION

In this section we derive our multi-objective optimization algorithm for simultaneously fitting the scopes’ stitched
gamma-ray signal to the model function developed in [4].

Let Si(t) be the stitched gamma-ray signal for scopes i = 1, 2, ..., k. For a typical GRH configuration, four
scopes corresponding to Cherenkov gas cells of 2.9, 4.5, 8, and 10 MeV are used, so k = 4 in this case. The



stitched gamma-ray model in [4] separates the signal into five components: deuterium-tritium (DT), capsule
(CAP, also known as the ablator), hohlraum (HOHL), thermo-mechanical package (TMP), and background from
laser-plasma interactions (LPI) within the hohlraum. The following maps defined in Table 1 are used in the
stitched gamma-ray model. Note that the symbol “⊗” is the symbol for binary operation convolution.

Table 1. Stitched Gamma-ray Model Functions

Function Description
RH time profile of the gamma-ray reaction history;

modeled by a Gaussian defined by (t, µRH , σRH , ARH) 7→ ARH exp

(
− 1

2

(
t−µRH
σRH

)2
)

ρR time profile of the areal density of the compressed ablator;

modeled by a Gaussian defined by (t, µρR, σρR, AρR) 7→ AρR exp

(
− 1

2

(
t−µρR
σρR

)2
)

IRF time profile of an impulse response function defined by the discrete convolution
PMT ⊗ GC where PMT is the impulse response function

of the photomultiplier tubes and GC is the impulse response function of the Cherenkov gas cells
HOHL time profile of the impulse response function of the hohlraum
TMP time profile of the impulse response function of the thermo-mechanical package
LPI time profile of the laser-plasma interactions

The model function that we will use as the objective function in our optimization algorithm is given by

Fi(t,β) = CPMT iCqeiCchiCohmαDT iNDT (RH⊗ IRF) (t) + CPMT iαCAP iNCAP [(RH · ρR)⊗ IRF ] (t) +

αHOHLiNHOHL (RH⊗ IRF ⊗HOHL) (t) + αTMP iNTMP (RH⊗ IRF ⊗ TMP) (t) +

αLPIiNLPIiLPI (t)

(1)

for scopes i = 1, 2, . . . , k and where β ∈ R10+k is the parameter vector,

β = (µRH , σRH , ARH , µρR, σρR, AρR, NDT , NCAP , NHOHL, NTMP , NLPI1 , NLPI2 , NLPI3 , NLPI4 , . . . , NLPIk)
(2)

whose entries are described in Table 2. The variables αDT i , αCAP i , αHOHLi , αTMP i , and αLPIi are what we
call “ratio factors” which are held fixed during the Levenberg-Marquardt procedure and modified later in the
ratio-correcting stage of our algorithm. See section 2.4 for an in depth discussion on the ratio-correcting scheme.
The constants CPMT i , Cqei , Cchi , and Cohm are hardware gain factors and will be discussed in section 2.7.

Table 2. Parameter Descriptions

Parameter Description
µRH , σRH , ARH mean, standard deviation, and amplitude of the gamma-ray reaction

history Gaussian, respectively

µρR, σρR, AρR mean, standard deviation, and amplitude of the areal
density of the compressed ablator model Gaussian, respectively

NDT , NCAP , NHOHL, NTMP normalization factors for the DT, capsule, hohlraum, and TMP
components respectively

NLPI1 , . . . , NLPIk normalization factors for the LPI components of scopes i = 1, . . . , k

At first glance, the parameter space looks to be quite large. But for a typical four-cell GRH configuration,
k = 4, and hence our parameter space is 14-dimensional (i.e., β ∈ R14). In section 2.5, we will introduce
restrictions on these parameters that will greatly reduce the parameter space further.

In practice, the stitched gamma-ray data and the hardware impulse response functions are sampled at unique
times—they are typically not sampled at the same time—giving us discrete values. The differences in the sample



times of the stitched gamma-ray data and the hardware impulse response functions are problematic in a discrete
convolution and will be addressed in section 2.1.

For each scope i, let

tstit
i =

(
tstiti1 , tstiti2 , . . . , tstiti

nstit
i

)T
tpmt
i =

(
tpmt
i1

, tpmt
i2

, . . . , tpmt
i
n
pmt
i

)T
tgc
i =

(
tgc
i1
, tgc
i2
, . . . , tgc

ingc
i

)T
(3)

be the time vectors for the stitched gamma-ray data, PMT and gas cell impulse response functions respec-

tively, and let T denote the matrix transpose. Further, let thohl =
(
thohl
1 , thohl

2 , . . . , thohl
nhohl

)T
and ttmp =(

ttmp
1 , ttmp

2 , . . . , ttmp
ntmp

)T
be the time vectors for the hohlraum and TMP impulse response functions respectively.

As previously mentioned, these times are not necessarily the same. Form the following vectors, for each scope i,

ystit
i =

(
ystit
i1 , ystit

i1 , . . . , ystit
i
nstit
i

)T
ypmt
i =

(
ypmt
i1

, ypmt
i2

, . . . , ypmt
i
n
pmt
i

)T
ygc
i =

(
ygc
i1
, ygc
i2
, . . . , ygc

ingc
i

)T
(4)

where ystit
ij

= Si

(
tstitij

)
for j = 1, 2, . . . , nstit

i ; ypmt
ij

= PMT
(
tpmt
ij

)
for j = 1, 2, . . . , npmt

i ; and ygc
ij

= GC
(
tgc
ij

)
for j = 1, 2, . . . , ngc

i . We construct the HOHL and TMP impulse response function vectors, yhohl and ytmp

respectively in a similar manner. We are not yet ready to make use of these values. A discrete time convolution
between two signals requires the signals to be sampled at the same times. Another problem is that the “start
time” of the signals may not coincide, and hence time-shifting of the signals as a result of a discrete time
convolution will occur. We make these issues more precise in the next section.

2.1 Pre-Signals Processing

We first define the “peak” and “start time” of a signal.

Definition 1. Let f be a discrete signal defined on a set of discrete times T = {t1, t2, . . . , tn | t1 < t2 < · · · < tn}.
LetG =

{
(t, y) ∈ R2 | f (t) = y

}
be the graph of f , and let (tM , yM ) be a data point such that yM = maxT f (tM ).

We define the peak region P ⊂ G with peak threshold 0 < δ < 1 to be the set of points such that the following
hold:

1. (tM , yM ) ∈ P ,

2. (tM+j , f (tM+j)) ∈ P if (tM+j−1, f (tM+j−1)) ∈ P and f (tM+j) ≥ δyM , and

3. (tM−j , f (tM−j)) ∈ P if (tM−j+1, f (tM−j+1)) ∈ P and f (tM−j) ≥ δyM ,

for j ∈ N.

Throughout the rest of this paper, we will refer to a peak region of a signal defined with a fixed peak threshold
δ = δ0 where 0 < δ0 < 1, unless otherwise noted.

Definition 2. The time t0 is a start time of a signal if (t0, f (t0)) ∈ P and t0 ≤ tj for all j = 1, 2, . . . , n.

Definition 3. Let f1 and f2 be two signals defined on a set of discrete times
T1 =

{
t11
, t12

, . . . , t1n1
| t11

< t12
< · · · < t1n1

}
and T2 =

{
t21
, t22

, . . . , t2n2
| t21

< t22
< · · · < t2n2

}
respectively.

Also let P1 and P2 be their respective peak regions. We say that signals f1 and f2 have the same start times
if the following hold:



1. (t11 , f1 (t11)) ∈ P1, (t21 , f2 (t21)) ∈ P2, and

2. t11
is the start time of f1 and t21

is the start time of f2.

Figure 2 gives an example of two pairs of signals, one pair with the same start time and the other with a different
start time.

The importance of these three definitions is that it allows us to talk about when exactly the IRF signals
“start.” The data recorded prior to the peak region is random noise, and in fact is used to calculate the variance
of our data when defining the reduced chi-squared statistic (see section 2.2). Thus by removing this extraneous
signal data, we can improve the quality of our convolutions. Hence we define the new truncated versions of the
IRFs:

Set δ0 = 0.01, and let P pmt
i and P gc

i be the peak regions with peak threshold δ0 of the PMT and gas cell
impulse response functions for scope i respectively; also, let P hohl and P tmp be the peak regions with peak
threshold δ0 of the hohlraum, and TMP impulse response functions respectively. Let tpmt

0i
, tgc

0i
, thohl

0 , and ttmp
0 be

their respective start times. Construct the truncated time vectors for each scope i:

t̂
pmt

i =

(
tpmt
i
k
pmt
i

, tpmt
i
k
pmt
i

+1
, . . . , tpmt

i
n
pmt
i

)T
t̂
gc

i =

(
tgc
ikgc
i

, tgc
ikgc
i

+1
, . . . , tgc

ingc
i

)T (5)

Figure 2. A typical example of impulse response functions. Functions 1 and 3 have the same start time, and functions
2 and 4 have different start times. A discrete time convolution on finite discrete time signals with different start times
would cause unwanted time-shifting of the peak region.



such that tpmt
i
k
pmt
i

= tpmt
0i

and tgc
ikgc
i

= tgc
0i

. Similarly, let t̂
hohl

=

(
thohl
i
khohl
i

, thohl
i
khohl
i

+1
, . . . , thohl

i
nhohl
i

)T
and t̂

tmp
=(

ttmp
i
k
tmp
i

, ttmp
i
k
tmp
i

+1
, . . . , ttmp

i
n
tmp
i

)T
such that thohl

khohl
i

= thohl
0 and ttmp

ktmp
i

= ttmp
0 be the time vectors for the hohlraum

and TMP impulse response functions respectively. Form the impulse response vectors ŷpmt, ŷgc, ŷhohl and ŷtmp

by sampling the respective impulse response functions at their respective times given by the time vectors.

There is still one modification we must do before we can make use of these impulse response function values.
Let f1 and f2 be two discrete time signals. In order to correctly evaluate the discrete time convolution f1 ⊗ f2,
we must ensure that the samples between the two signals coincide in time; that is, they are evaluated at the
same times. We make this notion more precise.

Definition 4. Let f be a discrete time signal with time vector t = (t1, t2, . . . , tn)
T

. Define

∆t = min {t[i+ 1]− t[i] | i = 1, 2, . . . , n− 1} (6)

to be the time step of f . Note that the notation t[k] means the k-th element of the vector t.

Thus let discrete time signals f1 and f2 have peak times P1 and P2 respectively, and let t10 and t20 be their
respective start times. Further, let ∆t1 and ∆t2 be their respective time steps. Since we will ultimately be
performing a discrete time convolution on these two signals, we want to make sure we do not decimate any data;
thus we choose the time step that is smallest between these two signals: ∆tmin = min {∆t1,∆t2}. Construct
new time vectors for f1 and f2:

t̃1 = (t10
, t10

+ ∆tmin, t10
+ 2∆tmin, . . . , t10

+ k1∆tmin)
T

t̃2 = (t20
, t20

+ ∆tmin, t20
+ 2∆tmin, . . . , t20

+ k2∆tmin)
T

(7)

where k1 and k2 are the largest integers such that k1 ≤
(
t1n1
− t10

)
/∆tmin and k2 ≤

(
t2n2
− t20

)
/∆tmin respec-

tively. Now it may be the case that the values of signals f1 and f2 may not be available when evaluated at these
new time vectors, so we approximate their values by a cubic spline interpolation at those points.

Thus we choose the minimum time step between the IRFs and interpolate the IRFs if necessary to obtain
the values at these new times. After performing these signals processing procedures on the IRF signals, we are
now ready to make use of their values in a discrete time convolution. There is one last modification we must
do before we move onto the fit algorithm. Since we will eventually be comparing the model function to the
stitched gamma-ray signal in our fit, we want to have the same time step as the stitched gamma-ray signal. Thus
after performing the necessary convolutions, we interpolate our convolved IRF signals to the stitched gamma-ray
signal’s time step. A flow chart summarizing the steps in the pre-signals processing stage is given in figure 3.

2.2 Multi-objective Optimization

For a typical GRH configuration, four scopes are used at different voltage offsets. Each of these scopes have
multiplexed channels to increase the dynamic range of the gamma-ray data recorded in ICF experiments. The
stitching algorithm in [3] “stitches” these multiplexed channels together to provide one stitched gamma-ray signal
for each of the four scopes. Our algorithm will optimize the model parameters in equation 1 to fit the stitched
gamma-ray data in each of the scopes simultaneously, making our optimization multi-objective. The core of our
optimization algorithm implements the Levenberg-Marquardt algorithm which will choose optimum parameter
values so that the error between the stitched gamma-ray data and the stitched gamma-ray model is minimized in
the least-squares sense. To make our objective more clear, consider the general case where we a have a finite set of
data points of independent and dependent variables, (xi, yi). Let f (x,β) be the model function with parameters

β, and form the vector ∆ (β) = (y1 − f (x1,β) , y2 − f (x2,β) , . . . , yn − f (xn,β))
T

. We wish to minimize the

function χ2 (β) = ‖∆ (β)‖2 using the Levenberg-Marquardt algorithm, where ‖·‖ refers to the induced `2 vector
norm for operators. The function χ2 is known as the chi-squared error, and division of this function by the
number of degrees of freedom gives the reduced chi-squared error. To adapt this optimization problem to our fit,
we must define the difference vector ∆ in a way that incorporates the stitched gamma-ray data from all of the



Figure 3. A flow chart of the pre-signals processing step.

scopes so that the parameter values are chosen to simultaneously fit the model functions for each of the scopes’
stitched gamma-ray data. Before we define the difference vector, we need one more definition.

Definition 5. Let f be a discrete time signal with graph G = {(t1, f (t1)) , (t2, f (t2)) , . . . , (tn, f (tn))}, peak
region P , and start time tj , 1 ≤ j ≤ n. The noise of the signal f is the subset

{(t1, f (t1)) , (t2, f (t2)) , . . . , (tj−1, f (tj−1))} ⊂ G. (8)

In other words, the noise of the signal f is all data points that are recorded before the signal’s start time.

We are now ready to define the difference vector ∆ which will be used in the least-squares calculation for the
Levenberg-Marquardt algorithm. Let k be the number of scopes, and recall that Fi (t,β) is the model function



for each scope i. Define the difference vector ∆ to be the vector-valued function ∆ : R10+k → RN , given by

∆ (β) =



ystit
1 [1]/s2

1

ystit
1 [2]/s2

1
...

ystit
1 [nstit

1 ]/s2
1

ystit
2 [1]/s2

2

ystit
2 [2]/s2

2
...

ystit
2 [nstit

2 ]/s2
2

...
ystit
k [1]/s2

k

ystit
k [2]/s2

k
...

ystit
k [nstit

k ]/s2
k



−
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)
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(
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1 [2],β

)
/s2

1
...

F1

(
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)
/s2

1
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(
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2 [1],β

)
/s2
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(
tstit
2 [2],β

)
/s2

2
...

F2

(
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2 [nstit

2 ],β
)
/s2

2
...

Fk
(
tstit
k [1],β

)
/s2
k

Fk
(
tstit
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/s2
k

...
Fk
(
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k [nstit

k ],β
)
/s2
k



, (9)

where N = nstit
1 + nstit

2 + · · · + nstit
k , and s2

i is the sample variance of the noise of the stitched gamma-ray data
from scope i; that is, suppose we have the stitched gamma-ray data for scope i with peak region Pi and start
time tiji ; then

s2
i =

1

ji − 1

nstit
i∑

m=1

(
ystit
i [m]

)2 − ji
ji − 1

ystit
i (10)

is the sample variance of the noise of the stitched gamma-ray data from scope i. Here, the notation ystit
i means the

arithmetic mean of the entries in the vector ystit
i . Hence we see that the difference vector ∆ is the concatenation

of the difference between each of the scopes’ stitched gamma-ray data and the gamma-ray model values, divided
by the sample variance of the noise. The division by the sample variance of the noise gives the chi-squared
error a bit more statistical information about the quality of the fit, but does not actually change the maxima
and minima of the chi-squared error function (hence not affecting the optimization results). We thus have the
reduced chi-squared error function

χ2 (β) =
1

M
‖∆ (β)‖2 (11)

where M is the number of degrees of freedom; that is, the number of elements in the difference vector ∆ minus
the number of elements in the parameter vector β. We will use the Levenberg-Marquardt algorithm to minimize
equation 11.

It is usually the case that the chi-squared error function has many local minima, but we desire the smallest
minimum (or global minimum). However, the initial points for the Levenberg-Marquardt algorithm must be
sufficiently close to the global minimum in order to achieve the best result (see [5] and [6] for an in depth
discussion about the Levenberg-Marquardt algorithm and its convergence properties). Thus the quality of the
fit is dependent on the quality of the initial point chosen. We have observed by running our algorithm on many
cryogenic DT shots that it is very sensitive to the placement of these initial points. Thus in order to make our
algorithm more robust, we only change our initial point choice only if we know for sure that the initial point
chosen converges to an undesired local minima and ratio-correction fails to improve the fit to a satisfactory level.
The key to knowing whether or not to change our initial point choice is to determine whether or not the resulting
fit is satisfactory or poor in automation. This can be accomplished with the help of a few metrics which aim to
capture the behavior of curves.

2.3 Good-fit Metrics

Our algorithm must determine when a fit is a “good fit” in automation. Although the chi-squared error is a
good metric, we find that it is not sufficient in determining satisfactory fits in automation.



Definition 6. Let Si be the stitched gamma-ray data from scope i for which we have a satisfactory fit for, and
let f be the satisfactory fit. Further, let T1 and T2 be the set of discrete times for which Si and f are defined on
respectively. Finally suppose that Si came from cryogenic DT shot X. Set

δmax =

∣∣∣∣max
T1

Si −max
T2

f

∣∣∣∣ ,
δarea =

∣∣∣∣∫
T1

Si −
∫
T2

f

∣∣∣∣ ,
δlength = |LT1 (Si)− LT2 (f)| , and

δtime = |B (Si)−B (f)| ,

(12)

where LΩ (f) is the arc length of f over Ω, and B (f) is the signal bang time of f ; i.e., a time t such that
f(t) = maxΩ f (Note that since our signals are discrete, interpolation is necessary to calculate the integral and
arc lengths of the signals). Suppose there is another DT shot Y for which we wish to obtain a satisfactory fit
for using our algorithm. Let S′i and f ′ be the stitched gamma-ray data from scope i and the fit in question
associated to shot Y . We say that f ′ is a good fit to S′i if all of the following hold:∣∣∣∣max

T ′
1

S′i −max
T ′
2

f ′
∣∣∣∣ ≤ δmax,∣∣∣∣∣

∫
T ′
1

S′i −
∫
T ′
2

f ′

∣∣∣∣∣ ≤ δarea,∣∣LT ′
1

(S′i)− LT ′
2

(f ′)
∣∣ ≤ δlength, and

|B (S′i)−B (f ′)| ≤ δtime.

(13)

In order to determine whether we have a good fit or not, we must have a satisfactory fit to compare to. At
first this seems a bit circular, but in practice it is not hard to obtain a satisfactory fit for high neutron yield DT
shots; these typically serve as good baselines for which to calculate the “good fit metrics” defined in Definition
6.

2.4 Ratio Correction

Now that we have defined what it means to have a good fit for the stitched gamma-ray data, we will introduce
the ratio-correction scheme of our algorithm which improves the fits in the case that the good fit metrics are
not immediately satisfied. The ratio correcting scheme assumes that the time profile of the stitched gamma-ray
data and the gamma-ray model components are proportional from shot-to-shot. Just like in our definition of a
good fit in the previous section, we need a satisfactory fit to act as a baseline. Let Si be the stitched gamma-ray
for scope i from DT shot X, and let c be a component signal of the stitched gamma-ray model (DT, capsule,
hohlraum, TMP, or LPI). Suppose that c is a component of a satisfactory fit for Si. Set

αc =
max c

maxSi
, (14)

which we call the control ratio. Now suppose that we have another DT shot Y with associated stitched gamma-
ray data S′i for scope i with component signal c′ (c′ is of the same type as c; that is, if c is the DT component
of shot X, then c′ is the DT component of shot Y , etc) of the stitched gamma-ray model fit that we want to
improve. We want to find the scaling factor ξ ∈ R such that (ξmax c′) /maxS′i = αc. Thus we have

ξ =
αc maxS′i

max c′
(15)

as our new ratio for component c′ of the stitched gamma-ray model for shot Y ; that is αc = ξ in equation 1
where the subscript c is the string “DT”, “CAP”, “HOHL”, “TMP”, or “LPI”.



2.5 Restricting the Parameter Space

As mentioned in section 2, the parameter vector β has 10+k entries where k is the number of scopes. For a typical
four-cell GRH configuration we have k = 4, so our parameter space is R14. Typically, for high neutron yield DT
shots, the LPI component of the gamma-ray signal in the 2.9 and 4.5 MeV threshold scopes are negligible; hence
we can set those LPI components identically equal to 0; that is NLPIi1 = NLPIi2 = 0 where i1 and i2 are the
2.9 and 4.5 MeV scopes.

Another restriction we can impose is that the normalization factors NHOHL and NTMP are proportional, so
we can effectively eliminate one of the variables. This brings our parameter space to R11 for a typical four-scope
configuration.

To make our algorithm more efficient and robust, it is necessary to determine the high and low neutron yield
shots (so we can determine if we can eliminate the low threshold MeV LPI components). This can often be
found indirectly by computing the signal-to-noise ratio. Recalling Definition 5 for the noise of a signal, we can
compute the signal-to-noise ratio by computing the ratio of the root-mean-square (RMS) of the entire signal to
the RMS of the noise. Low neutron yield shots tend to have a lower signal-to-noise ratio than high neutron yield
shots.

2.6 Choosing Initial Points for the Levenberg-Marquardt Algorithm

A large part of our strategy for choosing initial points rely on the fact that similar types of DT shots are similar
to one another; that is, high neutron yield shots are similar in time profile to other high neutron yield shots; low
neutron yield shots are similar in time profile to other low neutron yield shots. We can immediately choose an
initial point for the reaction history Gaussian parameters µRH , σRH and ARH through a deconvolution analysis
which can accurately extract these parameters. The remaining parameters can be initialized by taking their
corresponding values from previous fits that were satisfactory. Usually this provides reasonable starting points
for the Levenberg-Marquardt algorithm since the similarities between of the time profile between shots imply
that the chi-squared error functions are also similar. When choosing new initial points in the case that the
maximum iteration for ratio-correction loop has been reached, the new initial points can be chosen from other
satisfactory fits; by varying the original initial points by a small factor by a random constant; or a combination
of the two.

2.7 Hardware Gains

Our fit also has to account for the hardware gains which distort the gamma-ray signal. All of the hardware
gains are scope dependent with the exception of Cohm which accounts for the effects of the resistance caused by
the Mach-Zehnder fiber-optic cable in the GRH diagnostic. See [7] for more information on the Mach-Zehnder
fiber-optic cable for the GRH diagnostic. The gain Cqe is the quantum efficiency, and CPMT is the hardware gain
resulting from the photomultiplier tubes. We also need to take into account the different MeV thresholds in the
Cherenkov gas cells. Let Φi be the Cherenkov response function (note that this is different from the Cherenkov
gas cell impulse response function GC introduced in section 2) and Γ be the DT gamma-ray spectrum. The
Cherenkov gain for scope i with respect to the 8 MeV threshold is defined to be Cchi = Φi·Γ

Φi8 ·Γ
where Φi8 is the

Cherenkov response function corresponding to the 8 MeV threshold scope.

3. APPLICATION TO GAMMA REACTION HISTORY DATA

Figure 4 displays the result of the multi-objective algorithm ran on cryogenic DT implosion shot N120417. The
optimized parameter vector is given by

β =
(
22.81, 0.063, 89317.58, 22.93, 0.10, 97792.21, 0.90, 4.30× 10−12, 1.14× 10−8, 1.01, 0.00, 0.00, 0.31

)T
. (16)

From this we can immediately extract some performance metrics on the DT shot, in particular the reaction
history and areal density bang times and burn widths. The DT yield can also be extracted from this data [4].
The data from β can also be used to draw conclusions about the different components of the gamma reaction
history. Table 3 shows a comparison between the extracted metrics from the multi-objective algorithm and the
calibrated metrics obtained from a deconvolution analysis for shot N120417. We see from this that the fit shows
agreement with previous analysis on this shot.



Figure 4. A sample fit to a cryogenic DT shot (N120417). Each panel displays the total fit from different gas cell thresholds
with its additive components and the stitched gamma-ray signal for reference.

Table 3. Comparison Between Extracted Metrics from the Multi-objective Algorithm and Calibrated Metrics for Shot
N120417’s DT and Ablator Components

Extracted Metrics Calibrated Metrics

DT Bang DT Burn Burn-weighted ρR Burn-weighted ρR Scope DT Peak DT Peak
Time (ns) Width (ns) Peak Time (ns) Peak Width (ns) Time (ns) Width (ns)

22.81 0.15 22.93 0.25 10 MeV 22.83 0.17
2.9 MeV 22.89 0.18
4.5 MeV 22.90 0.21
8 MeV 22.82 0.16



4. CONCLUSION AND SUMMARY

The GRH diagnostic has the ability to determine DT fusion burn width, bang time, yield, and areal density of
the compressed ablator in Cryogenic DT shots. A multi-objective fitting routine has been developed to obtain
optimized parameters for a best-fit model curve to the GRH stitched gamma-ray signal. Using these parameters,
the Gamma Reaction History Gaussian as well as the components of the gamma ray signal are reconstructed.
The success or failure of a fit is evaluated by measuring the least-squares error and other “good-fit” metrics
which are sufficiently robust to be used in automated production software. Fusion burn parameter results have
been compared against the deconvolution results for peak time and peak width and show good agreement.
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